3.9.6 \(\int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))^2 \, dx\) [806]

Optimal. Leaf size=249 \[ \frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

[Out]

-4/3*a*b*cot(d*x+c)^(3/2)/d-2/5*a^2*cot(d*x+c)^(5/2)/d-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))
/d*2^(1/2)-1/2*(a^2-2*a*b-b^2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*(a^2+2*a*b-b^2)*ln(1+cot(d*x+c
)-2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)-1/4*(a^2+2*a*b-b^2)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+
2*(a^2-b^2)*cot(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3754, 3624, 3609, 3615, 1182, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x])^2,x]

[Out]

((a^2 - 2*a*b - b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + Sqr
t[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) + (2*(a^2 - b^2)*Sqrt[Cot[c + d*x]])/d - (4*a*b*Cot[c + d*x]^(3/2))/(3*d
) - (2*a^2*Cot[c + d*x]^(5/2))/(5*d) + ((a^2 + 2*a*b - b^2)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]
)/(2*Sqrt[2]*d) - ((a^2 + 2*a*b - b^2)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3624

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
d^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))^2 \, dx &=\int \cot ^{\frac {3}{2}}(c+d x) (b+a \cot (c+d x))^2 \, dx\\ &=-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \cot ^{\frac {3}{2}}(c+d x) \left (-a^2+b^2+2 a b \cot (c+d x)\right ) \, dx\\ &=-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \sqrt {\cot (c+d x)} \left (-2 a b-\left (a^2-b^2\right ) \cot (c+d x)\right ) \, dx\\ &=\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \frac {a^2-b^2-2 a b \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 \text {Subst}\left (\int \frac {-a^2+b^2+2 a b x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}\\ &=\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}\\ &=\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 \left (a^2-b^2\right ) \sqrt {\cot (c+d x)}}{d}-\frac {4 a b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a^2 \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 1.45, size = 202, normalized size = 0.81 \begin {gather*} -\frac {\frac {2}{5} a^2 \cot ^{\frac {5}{2}}(c+d x)-\frac {4}{3} a b \cot ^{\frac {3}{2}}(c+d x) \left (-1+\, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )\right )-\frac {1}{4} \left (a^2-b^2\right ) \left (2 \sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+8 \sqrt {\cot (c+d x)}+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x])^2,x]

[Out]

-(((2*a^2*Cot[c + d*x]^(5/2))/5 - (4*a*b*Cot[c + d*x]^(3/2)*(-1 + Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]
^2]))/3 - ((a^2 - b^2)*(2*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[C
ot[c + d*x]]] + 8*Sqrt[Cot[c + d*x]] + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Sqrt[2]*Lo
g[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/4)/d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 18.64, size = 6328, normalized size = 25.41

method result size
default \(\text {Expression too large to display}\) \(6328\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 209, normalized size = 0.84 \begin {gather*} -\frac {30 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 30 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 15 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 15 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \frac {80 \, a b}{\tan \left (d x + c\right )^{\frac {3}{2}}} - \frac {120 \, {\left (a^{2} - b^{2}\right )}}{\sqrt {\tan \left (d x + c\right )}} + \frac {24 \, a^{2}}{\tan \left (d x + c\right )^{\frac {5}{2}}}}{60 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/60*(30*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 30*sqrt(2)*(a^2 -
 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + 15*sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(
2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 15*sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) +
 1/tan(d*x + c) + 1) + 80*a*b/tan(d*x + c)^(3/2) - 120*(a^2 - b^2)/sqrt(tan(d*x + c)) + 24*a^2/tan(d*x + c)^(5
/2))/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+b*tan(d*x+c))**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4847 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)^2*cot(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x))^2,x)

[Out]

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x))^2, x)

________________________________________________________________________________________